4.14.4 2x(5x2+y(x)2)y(x)=x2y(x)y(x)3

ODE
2x(5x2+y(x)2)y(x)=x2y(x)y(x)3 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0608681 (sec), leaf count = 216

{{y(x)Root[#15+#12e3c1x3/2+3e3c1x&,1]},{y(x)Root[#15+#12e3c1x3/2+3e3c1x&,2]},{y(x)Root[#15+#12e3c1x3/2+3e3c1x&,3]},{y(x)Root[#15+#12e3c1x3/2+3e3c1x&,4]},{y(x)Root[#15+#12e3c1x3/2+3e3c1x&,5]}}

Maple
cpu = 0.021 (sec), leaf count = 37

{29ln(3x2+(y(x))2x2)109ln(y(x)x)ln(x)_C1=0} Mathematica raw input

DSolve[2*x*(5*x^2 + y[x]^2)*y'[x] == x^2*y[x] - y[x]^3,y[x],x]

Mathematica raw output

{{y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 1]}, 
{y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 2]}, {
y[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 3]}, {y
[x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 4]}, {y[
x] -> Root[3*E^(3*C[1])*Sqrt[x] + (E^(3*C[1])*#1^2)/x^(3/2) - #1^5 & , 5]}}

Maple raw input

dsolve(2*x*(5*x^2+y(x)^2)*diff(y(x),x) = x^2*y(x)-y(x)^3, y(x),'implicit')

Maple raw output

2/9*ln((3*x^2+y(x)^2)/x^2)-10/9*ln(y(x)/x)-ln(x)-_C1 = 0