4.13.49 x(x2xy(x)+y(x)2)y(x)+y(x)(x2+xy(x)+y(x)2)=0

ODE
x(x2xy(x)+y(x)2)y(x)+y(x)(x2+xy(x)+y(x)2)=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0363929 (sec), leaf count = 26

Solve[c1+tan1(y(x)x)=log(y(x)x)+2log(x),y(x)]

Maple
cpu = 0.018 (sec), leaf count = 29

{12arctan(y(x)x)12ln(y(x)x)ln(x)_C1=0} Mathematica raw input

DSolve[y[x]*(x^2 + x*y[x] + y[x]^2) + x*(x^2 - x*y[x] + y[x]^2)*y'[x] == 0,y[x],x]

Mathematica raw output

Solve[ArcTan[y[x]/x] + C[1] == 2*Log[x] + Log[y[x]/x], y[x]]

Maple raw input

dsolve(x*(x^2-x*y(x)+y(x)^2)*diff(y(x),x)+(x^2+x*y(x)+y(x)^2)*y(x) = 0, y(x),'implicit')

Maple raw output

1/2*arctan(y(x)/x)-1/2*ln(y(x)/x)-ln(x)-_C1 = 0