4.13.19 (x2+2xy(x)y(x)2)y(x)+x22xy(x)+y(x)2=0

ODE
(x2+2xy(x)y(x)2)y(x)+x22xy(x)+y(x)2=0 ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0366941 (sec), leaf count = 89

Solve[c1=RootSum[#133#12+#11&,#12log(y(x)x#1)2#1log(y(x)x#1)log(y(x)x#1)3#126#1+1&]+log(x),y(x)]

Maple
cpu = 0.016 (sec), leaf count = 40

{_C1+y(x)x_a22_a1_a33_a2+_a1d_a+ln(x)=0} Mathematica raw input

DSolve[x^2 - 2*x*y[x] + y[x]^2 + (x^2 + 2*x*y[x] - y[x]^2)*y'[x] == 0,y[x],x]

Mathematica raw output

Solve[C[1] == Log[x] + RootSum[-1 + #1 - 3*#1^2 + #1^3 & , (-Log[-#1 + y[x]/x] -
 2*Log[-#1 + y[x]/x]*#1 + Log[-#1 + y[x]/x]*#1^2)/(1 - 6*#1 + 3*#1^2) & ], y[x]]

Maple raw input

dsolve((x^2+2*x*y(x)-y(x)^2)*diff(y(x),x)+x^2-2*x*y(x)+y(x)^2 = 0, y(x),'implicit')

Maple raw output

-_C1+Intat(1/(_a^3-3*_a^2+_a-1)*(_a^2-2*_a-1),_a = y(x)/x)+ln(x) = 0