4.1.6 y(x)=asin(bx+c)+ky(x)

ODE
y(x)=asin(bx+c)+ky(x) ODE Classification

[[_linear, `class A`]]

Book solution method
Linear ODE

Mathematica
cpu = 0.0671456 (sec), leaf count = 43

{{y(x)c1ekxa(ksin(bx+c)+bcos(bx+c))b2+k2}}

Maple
cpu = 0.013 (sec), leaf count = 40

{y(x)=ekx_C1a(bcos(bx+c)+sin(bx+c)k)b2+k2} Mathematica raw input

DSolve[y'[x] == a*Sin[c + b*x] + k*y[x],y[x],x]

Mathematica raw output

{{y[x] -> E^(k*x)*C[1] - (a*(b*Cos[c + b*x] + k*Sin[c + b*x]))/(b^2 + k^2)}}

Maple raw input

dsolve(diff(y(x),x) = a*sin(b*x+c)+k*y(x), y(x),'implicit')

Maple raw output

y(x) = exp(k*x)*_C1-a*(b*cos(b*x+c)+sin(b*x+c)*k)/(b^2+k^2)