4.11.47 2xy(x)y(x)=4(2x+1)x2+y(x)2

ODE
2xy(x)y(x)=4(2x+1)x2+y(x)2 ODE Classification

[_rational, _Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.00829588 (sec), leaf count = 52

{{y(x)xc1+4x2+4x},{y(x)xc1+4x2+4x}}

Maple
cpu = 0.007 (sec), leaf count = 22

{4x3+(y(x))2_C1x4x2=0} Mathematica raw input

DSolve[2*x*y[x]*y'[x] == 4*x^2*(1 + 2*x) + y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -(Sqrt[x]*Sqrt[4*x + 4*x^2 + C[1]])}, {y[x] -> Sqrt[x]*Sqrt[4*x + 4*x^
2 + C[1]]}}

Maple raw input

dsolve(2*x*y(x)*diff(y(x),x) = 4*x^2*(1+2*x)+y(x)^2, y(x),'implicit')

Maple raw output

-4*x^3+y(x)^2-_C1*x-4*x^2 = 0