4.11.26 x(y(x)+4)y(x)=y(x)2+2y(x)+2x

ODE
x(y(x)+4)y(x)=y(x)2+2y(x)+2x ODE Classification

[_rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Homogeneous equation, special

Mathematica
cpu = 0.0220779 (sec), leaf count = 96

{{y(x)11x+4(xx+4)3/2xc1(x+4)4x+44},{y(x)1(xx+4)3/2xc1(x+4)4x+4+1x+44}}

Maple
cpu = 0.033 (sec), leaf count = 74

{(4+y(x))11x(4+x)321_C14(4+x)1(4+x)1=0,(4+y(x))1+1x(4+x)321_C14(4+x)1(4+x)1=0} Mathematica raw input

DSolve[x*(4 + y[x])*y'[x] == 2*x + 2*y[x] + y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -4 + ((4 + x)^(-1) - (x/(4 + x))^(3/2)/(x*Sqrt[(-4 + (4 + x)*C[1])/(4 
+ x)]))^(-1)}, {y[x] -> -4 + ((4 + x)^(-1) + (x/(4 + x))^(3/2)/(x*Sqrt[(-4 + (4 
+ x)*C[1])/(4 + x)]))^(-1)}}

Maple raw input

dsolve(x*(4+y(x))*diff(y(x),x) = 2*x+2*y(x)+y(x)^2, y(x),'implicit')

Maple raw output

1/(4+y(x))+x^(1/2)/(4+x)^(3/2)/(_C1-4/(4+x))^(1/2)-1/(4+x) = 0, 1/(4+y(x))-x^(1/
2)/(4+x)^(3/2)/(_C1-4/(4+x))^(1/2)-1/(4+x) = 0