[_Riccati]
Book solution method
Riccati ODE, Generalized ODE
Mathematica ✗
cpu = 22.0608 (sec), leaf count = 0 , could not solve
DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*Derivative[1][y][x] == 0, y[x], x]
Maple ✓
cpu = 0.43 (sec), leaf count = 498
DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*y'[x] == 0,y[x],x]
Mathematica raw output
DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*Derivative[1][y][x] == 0
, y[x], x]
Maple raw input
dsolve(x^n*diff(y(x),x)+x^(2*n-2)+y(x)^2+(1-n)*x^(n-1) = 0, y(x),'implicit')
Maple raw output
y(x) = -x^n*(x^(3/2-3/2*n+1/2*(n-3)^(1/2)*(n+1)^(1/2))*_C1*(n-1)*(n-1+(n-3)^(1/2
)*(n+1)^(1/2))*hypergeom([],[(-(n-3)^(1/2)*(n+1)^(1/2)+2*n-2)/(n-1)],1/(n-1)*x^(
1-n))+x^(3/2-3/2*n-1/2*(n-3)^(1/2)*(n+1)^(1/2))*(n-1)*(n-1-(n-3)^(1/2)*(n+1)^(1/
2))*hypergeom([],[((n-3)^(1/2)*(n+1)^(1/2)+2*n-2)/(n-1)],1/(n-1)*x^(1-n))-1/2*x^
(1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2)*_C1*(-(n-3)^(3/2)*(n+1)^(3/2)+(n-1)*(-4+
(n+1)^(1/2)*(n-1)*(n-3)^(1/2)))*hypergeom([],[(n-1-(n-3)^(1/2)*(n+1)^(1/2))/(n-1
)],1/(n-1)*x^(1-n))+1/2*hypergeom([],[1/(n-1)*(n-1+(n-3)^(1/2)*(n+1)^(1/2))],1/(
n-1)*x^(1-n))*(-(n-3)^(3/2)*(n+1)^(3/2)+(n-1)*(4+(n+1)^(1/2)*(n-1)*(n-3)^(1/2)))
*x^(-1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2))/x/(n-1+(n-3)^(1/2)*(n+1)^(1/2))/(n-
1-(n-3)^(1/2)*(n+1)^(1/2))/(_C1*x^(1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2)*hyperg
eom([],[(n-1-(n-3)^(1/2)*(n+1)^(1/2))/(n-1)],1/(n-1)*x^(1-n))+x^(-1/2*(n-3)^(1/2
)*(n+1)^(1/2)-1/2*n+1/2)*hypergeom([],[1/(n-1)*(n-1+(n-3)^(1/2)*(n+1)^(1/2))],1/
(n-1)*x^(1-n)))