4.8.37 (1n)xn1+x2n2+xny(x)+y(x)2=0

ODE
(1n)xn1+x2n2+xny(x)+y(x)2=0 ODE Classification

[_Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 22.0608 (sec), leaf count = 0 , could not solve

DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*Derivative[1][y][x] == 0, y[x], x]

Maple
cpu = 0.43 (sec), leaf count = 498

{y(x)=xnx(x323n2+12n3n+1_C1(n1)(n1+n3n+1)0F1( ;1n1(n3n+1+2n2);x1nn1)+x323n212n3n+1(n1)(n1n3n+1)0F1( ;1n1(n3n+1+2n2);x1nn1)_C12x12n3n+1n2+12((n3)32(n+1)32+(n1)(4+n+1(n1)n3))0F1( ;1n1(n1n3n+1);x1nn1)+120F1( ;1n1(n1+n3n+1);x1nn1)((n3)32(n+1)32+(n1)(4+n+1(n1)n3))x12n3n+1n2+12)(n1+n3n+1)1(n1n3n+1)1(_C1x12n3n+1n2+120F1( ;1n1(n1n3n+1);x1nn1)+x12n3n+1n2+120F1( ;1n1(n1+n3n+1);x1nn1))1} Mathematica raw input

DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*y'[x] == 0,y[x],x]

Mathematica raw output

DSolve[(1 - n)*x^(-1 + n) + x^(-2 + 2*n) + y[x]^2 + x^n*Derivative[1][y][x] == 0
, y[x], x]

Maple raw input

dsolve(x^n*diff(y(x),x)+x^(2*n-2)+y(x)^2+(1-n)*x^(n-1) = 0, y(x),'implicit')

Maple raw output

y(x) = -x^n*(x^(3/2-3/2*n+1/2*(n-3)^(1/2)*(n+1)^(1/2))*_C1*(n-1)*(n-1+(n-3)^(1/2
)*(n+1)^(1/2))*hypergeom([],[(-(n-3)^(1/2)*(n+1)^(1/2)+2*n-2)/(n-1)],1/(n-1)*x^(
1-n))+x^(3/2-3/2*n-1/2*(n-3)^(1/2)*(n+1)^(1/2))*(n-1)*(n-1-(n-3)^(1/2)*(n+1)^(1/
2))*hypergeom([],[((n-3)^(1/2)*(n+1)^(1/2)+2*n-2)/(n-1)],1/(n-1)*x^(1-n))-1/2*x^
(1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2)*_C1*(-(n-3)^(3/2)*(n+1)^(3/2)+(n-1)*(-4+
(n+1)^(1/2)*(n-1)*(n-3)^(1/2)))*hypergeom([],[(n-1-(n-3)^(1/2)*(n+1)^(1/2))/(n-1
)],1/(n-1)*x^(1-n))+1/2*hypergeom([],[1/(n-1)*(n-1+(n-3)^(1/2)*(n+1)^(1/2))],1/(
n-1)*x^(1-n))*(-(n-3)^(3/2)*(n+1)^(3/2)+(n-1)*(4+(n+1)^(1/2)*(n-1)*(n-3)^(1/2)))
*x^(-1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2))/x/(n-1+(n-3)^(1/2)*(n+1)^(1/2))/(n-
1-(n-3)^(1/2)*(n+1)^(1/2))/(_C1*x^(1/2*(n-3)^(1/2)*(n+1)^(1/2)-1/2*n+1/2)*hyperg
eom([],[(n-1-(n-3)^(1/2)*(n+1)^(1/2))/(n-1)],1/(n-1)*x^(1-n))+x^(-1/2*(n-3)^(1/2
)*(n+1)^(1/2)-1/2*n+1/2)*hypergeom([],[1/(n-1)*(n-1+(n-3)^(1/2)*(n+1)^(1/2))],1/
(n-1)*x^(1-n)))