[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
Book solution method
Change of Variable, new dependent variable
Mathematica ✓
cpu = 1.51103 (sec), leaf count = 40
Maple ✓
cpu = 0.405 (sec), leaf count = 23
DSolve[Csc[x*y[x]] + x^3*y[x] + x^4*y'[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> -(ArcCos[-1/(2*x^2) + C[1]]/x)}, {y[x] -> ArcCos[-1/(2*x^2) + C[1]]/x}
}
Maple raw input
dsolve(x^4*diff(y(x),x)+x^3*y(x)+csc(x*y(x)) = 0, y(x),'implicit')
Maple raw output
-_C1+(-2*cos(x*y(x))*x^2-1)/x^2 = 0