ODE
\[ x^3 y'(x)=x^4+y(x)^2 \] ODE Classification
[[_homogeneous, `class G`], _rational, _Riccati]
Book solution method
Riccati ODE, Generalized ODE
Mathematica ✓
cpu = 0.0201781 (sec), leaf count = 22
\[\left \{\left \{y(x)\to \frac {x^2 \left (c_1+\log (x)-1\right )}{c_1+\log (x)}\right \}\right \}\]
Maple ✓
cpu = 0.014 (sec), leaf count = 24
\[ \left \{ \ln \left ( x \right ) -{\it \_C1}-{\frac {{x}^{2}}{{x}^{2}-y \left ( x \right ) }}=0 \right \} \] Mathematica raw input
DSolve[x^3*y'[x] == x^4 + y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> (x^2*(-1 + C[1] + Log[x]))/(C[1] + Log[x])}}
Maple raw input
dsolve(x^3*diff(y(x),x) = x^4+y(x)^2, y(x),'implicit')
Maple raw output
ln(x)-_C1-x^2/(x^2-y(x)) = 0