4.6.46 (1x2)y(x)=a+4xy(x)

ODE
(1x2)y(x)=a+4xy(x) ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 0.00616223 (sec), leaf count = 30

{{y(x)3c1ax(x23)3(x21)2}}

Maple
cpu = 0.007 (sec), leaf count = 29

{y(x)=1(1+x)2(1+x)2(a(x33x)+_C1)} Mathematica raw input

DSolve[(1 - x^2)*y'[x] == a + 4*x*y[x],y[x],x]

Mathematica raw output

{{y[x] -> (-(a*x*(-3 + x^2)) + 3*C[1])/(3*(-1 + x^2)^2)}}

Maple raw input

dsolve((-x^2+1)*diff(y(x),x) = a+4*x*y(x), y(x),'implicit')

Maple raw output

y(x) = (-a*(1/3*x^3-x)+_C1)/(-1+x)^2/(1+x)^2