4.6.39 (x2+1)y(x)=x(x2+1)xy(x)

ODE
(x2+1)y(x)=x(x2+1)xy(x) ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 0.00913295 (sec), leaf count = 27

{{y(x)c1x2+1+13(x2+1)}}

Maple
cpu = 0.01 (sec), leaf count = 20

{y(x)=x23+13+_C11x2+1} Mathematica raw input

DSolve[(1 + x^2)*y'[x] == x*(1 + x^2) - x*y[x],y[x],x]

Mathematica raw output

{{y[x] -> (1 + x^2)/3 + C[1]/Sqrt[1 + x^2]}}

Maple raw input

dsolve((x^2+1)*diff(y(x),x) = x*(x^2+1)-x*y(x), y(x),'implicit')

Maple raw output

y(x) = 1/3*x^2+1/3+1/(x^2+1)^(1/2)*_C1