ODE
\[ x^2 y'(x)+(1-2 x) y(x)=x^2 \] ODE Classification
[_linear]
Book solution method
Linear ODE
Mathematica ✓
cpu = 0.00676732 (sec), leaf count = 19
\[\left \{\left \{y(x)\to x^2 \left (c_1 e^{\frac {1}{x}}+1\right )\right \}\right \}\]
Maple ✓
cpu = 0.008 (sec), leaf count = 16
\[ \left \{ y \left ( x \right ) ={x}^{2} \left ( {{\rm e}^{{x}^{-1}}}{\it \_C1}+1 \right ) \right \} \] Mathematica raw input
DSolve[(1 - 2*x)*y[x] + x^2*y'[x] == x^2,y[x],x]
Mathematica raw output
{{y[x] -> x^2*(1 + E^x^(-1)*C[1])}}
Maple raw input
dsolve(x^2*diff(y(x),x)+(1-2*x)*y(x) = x^2, y(x),'implicit')
Maple raw output
y(x) = x^2*(exp(1/x)*_C1+1)