4.5.15 xy(x)=(y(x)2+1)(x2+tan1(y(x)))

ODE
xy(x)=(y(x)2+1)(x2+tan1(y(x))) ODE Classification

[`y=_G(x,y')`]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.0399848 (sec), leaf count = 14

{{y(x)tan(x(2c1+x))}}

Maple
cpu = 0.112 (sec), leaf count = 17

{arctan(y(x))xx_C1=0} Mathematica raw input

DSolve[x*y'[x] == (x^2 + ArcTan[y[x]])*(1 + y[x]^2),y[x],x]

Mathematica raw output

{{y[x] -> Tan[x*(x + 2*C[1])]}}

Maple raw input

dsolve(x*diff(y(x),x) = (1+y(x)^2)*(x^2+arctan(y(x))), y(x),'implicit')

Maple raw output

1/x*arctan(y(x))-x-_C1 = 0