4.43.19 y(x)2y(x)+y(x)=ex

ODE
y(x)2y(x)+y(x)=ex ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.0232767 (sec), leaf count = 33

{{y(x)ex((c21)x+c1c2+x22+1)+c3}}

Maple
cpu = 0.02 (sec), leaf count = 28

{y(x)=(x2+(2_C12)x2_C1+2_C2+2)ex2+_C3} Mathematica raw input

DSolve[y'[x] - 2*y''[x] + y'''[x] == E^x,y[x],x]

Mathematica raw output

{{y[x] -> E^x*(1 + x^2/2 + C[1] + x*(-1 + C[2]) - C[2]) + C[3]}}

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+diff(y(x),x) = exp(x), y(x),'implicit')

Maple raw output

y(x) = 1/2*(x^2+(2*_C1-2)*x-2*_C1+2*_C2+2)*exp(x)+_C3