4.43.6 \(y'''(x)+2 x y'(x)+y(x)=0\)

ODE
\[ y'''(x)+2 x y'(x)+y(x)=0 \] ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0119249 (sec), leaf count = 59

\[\left \{\left \{y(x)\to c_1 \text {Ai}\left (\sqrt [3]{-\frac {1}{2}} x\right )^2+c_3 \text {Bi}\left (\sqrt [3]{-\frac {1}{2}} x\right )^2+c_2 \text {Ai}\left (\sqrt [3]{-\frac {1}{2}} x\right ) \text {Bi}\left (\sqrt [3]{-\frac {1}{2}} x\right )\right \}\right \}\]

Maple
cpu = 0.081 (sec), leaf count = 43

\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( {{\rm Ai}\left (-{\frac {{2}^{{\frac {2}{3}}}x}{2}}\right )} \right ) ^{2}+{\it \_C2}\, \left ( {{\rm Bi}\left (-{\frac {{2}^{{\frac {2}{3}}}x}{2}}\right )} \right ) ^{2}+{\it \_C3}\,{{\rm Ai}\left (-{\frac {{2}^{{\frac {2}{3}}}x}{2}}\right )}{{\rm Bi}\left (-{\frac {{2}^{{\frac {2}{3}}}x}{2}}\right )} \right \} \] Mathematica raw input

DSolve[y[x] + 2*x*y'[x] + y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> AiryAi[(-1/2)^(1/3)*x]^2*C[1] + AiryAi[(-1/2)^(1/3)*x]*AiryBi[(-1/2)^(
1/3)*x]*C[2] + AiryBi[(-1/2)^(1/3)*x]^2*C[3]}}

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)+2*x*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*AiryAi(-1/2*2^(2/3)*x)^2+_C2*AiryBi(-1/2*2^(2/3)*x)^2+_C3*AiryAi(-1/2
*2^(2/3)*x)*AiryBi(-1/2*2^(2/3)*x)