ODE
\[ y'''(x)-3 y'(x)+2 y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00780734 (sec), leaf count = 25
\[\left \{\left \{y(x)\to c_1 e^{-2 x}+e^x \left (c_3 x+c_2\right )\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 19
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-2\,x}}+{{\rm e}^{x}} \left ( {\it \_C3}\,x+{\it \_C2} \right ) \right \} \] Mathematica raw input
DSolve[2*y[x] - 3*y'[x] + y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[1]/E^(2*x) + E^x*(C[2] + x*C[3])}}
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)-3*diff(y(x),x)+2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-2*x)+exp(x)*(_C3*x+_C2)