ODE
\[ y(x) y''(x) (1-\log (y(x)))+y'(x)^2 (\log (y(x))+1)=0 \] ODE Classification
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
Book solution method
TO DO
Mathematica ✗
cpu = 599.998 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.059 (sec), leaf count = 20
\[ \left \{ - \left ( -1+\ln \left ( y \left ( x \right ) \right ) \right ) ^{-1}-{\it \_C1}\,x-{\it \_C2}=0 \right \} \] Mathematica raw input
DSolve[(1 + log[y[x]])*y'[x]^2 + (1 - Log[y[x]])*y[x]*y''[x] == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(y(x)*(1-ln(y(x)))*diff(diff(y(x),x),x)+(1+ln(y(x)))*diff(y(x),x)^2 = 0, y(x),'implicit')
Maple raw output
-1/(-1+ln(y(x)))-_C1*x-_C2 = 0