4.41.39 \(a^2 y(x)+\left (x^2+y(x)^2\right )^2 y''(x)=0\)

ODE
\[ a^2 y(x)+\left (x^2+y(x)^2\right )^2 y''(x)=0 \] ODE Classification

[NONE]

Book solution method
TO DO

Mathematica
cpu = 15.4326 (sec), leaf count = 0 , could not solve

DSolve[a^2*y[x] + (x^2 + y[x]^2)^2*Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.538 (sec), leaf count = 109

\[ \left \{ {\frac {1}{x} \left ( -{\it \_C2}\,x+\int ^{{\frac {y \left ( x \right ) }{x}}}\!{\frac {1}{{\it \_C1}\,{{\it \_f}}^{2}+{a}^{2}+{\it \_C1}}\sqrt { \left ( {{\it \_f}}^{2}+1 \right ) \left ( {\it \_C1}\,{{\it \_f}}^{2}+{a}^{2}+{\it \_C1} \right ) }}{d{\it \_f}}x-1 \right ) }=0,{\frac {1}{x} \left ( -{\it \_C2}\,x+\int ^{{\frac {y \left ( x \right ) }{x}}}\!{\frac {1}{{\it \_C1}\,{{\it \_f}}^{2}+{a}^{2}+{\it \_C1}}\sqrt { \left ( {{\it \_f}}^{2}+1 \right ) \left ( {\it \_C1}\,{{\it \_f}}^{2}+{a}^{2}+{\it \_C1} \right ) }}{d{\it \_f}}x+1 \right ) }=0 \right \} \] Mathematica raw input

DSolve[a^2*y[x] + (x^2 + y[x]^2)^2*y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[a^2*y[x] + (x^2 + y[x]^2)^2*Derivative[2][y][x] == 0, y[x], x]

Maple raw input

dsolve((x^2+y(x)^2)^2*diff(diff(y(x),x),x)+a^2*y(x) = 0, y(x),'implicit')

Maple raw output

(-_C2*x+Intat(1/(_C1*_f^2+a^2+_C1)*((_f^2+1)*(_C1*_f^2+a^2+_C1))^(1/2),_f = y(x)
/x)*x+1)/x = 0, (-_C2*x+Intat(1/(_C1*_f^2+a^2+_C1)*((_f^2+1)*(_C1*_f^2+a^2+_C1))
^(1/2),_f = y(x)/x)*x-1)/x = 0