4.41.2 a2+x2(by(x)2+y(x)y(x))=y(x)y(x)

ODE
a2+x2(by(x)2+y(x)y(x))=y(x)y(x) ODE Classification

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.214429 (sec), leaf count = 63

{{y(x)c2((b+1)xa2+x2+a2(b+1)log(a2+x2+x)+(b+1)x2+2c1)1b+1}}

Maple
cpu = 0.087 (sec), leaf count = 52

{y(x)(y(x))bb+1_C12(a2ln(x+a2+x2)+x(x+a2+x2))_C2=0} Mathematica raw input

DSolve[Sqrt[a^2 + x^2]*(b*y'[x]^2 + y[x]*y''[x]) == y[x]*y'[x],y[x],x]

Mathematica raw output

{{y[x] -> C[2]*((1 + b)*x^2 + (1 + b)*x*Sqrt[a^2 + x^2] + 2*C[1] + a^2*(1 + b)*L
og[x + Sqrt[a^2 + x^2]])^(1 + b)^(-1)}}

Maple raw input

dsolve((a^2+x^2)^(1/2)*(y(x)*diff(diff(y(x),x),x)+b*diff(y(x),x)^2) = y(x)*diff(y(x),x), y(x),'implicit')

Maple raw output

y(x)/(b+1)*y(x)^b-1/2*(a^2*ln(x+(a^2+x^2)^(1/2))+x*(x+(a^2+x^2)^(1/2)))*_C1-_C2 
= 0