4.40.23 xy(x)y(x)+xy(x)2+2y(x)y(x)=0

ODE
xy(x)y(x)+xy(x)2+2y(x)y(x)=0 ODE Classification

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0446592 (sec), leaf count = 24

{{y(x)c22c1xx}}

Maple
cpu = 0.016 (sec), leaf count = 18

{(y(x))22+_C1x_C2=0} Mathematica raw input

DSolve[2*y[x]*y'[x] + x*y'[x]^2 + x*y[x]*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (Sqrt[2 - x*C[1]]*C[2])/Sqrt[x]}}

Maple raw input

dsolve(x*y(x)*diff(diff(y(x),x),x)+x*diff(y(x),x)^2+2*y(x)*diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

1/2*y(x)^2+_C1/x-_C2 = 0