[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 1.18291 (sec), leaf count = 359
Maple ✓
cpu = 0.075 (sec), leaf count = 61
DSolve[2*y[x]*y''[x] == 4*y[x]^2 + 8*y[x]^3 + y'[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[((-2*I)*EllipticF[I*ArcSinh[Sqrt[C[1]/(2 + 2*Sqrt[1 -
C[1]])]/Sqrt[#1]], (1 + Sqrt[1 - C[1]])/(1 - Sqrt[1 - C[1]])]*Sqrt[1 + C[1]/((2
- 2*Sqrt[1 - C[1]])*#1)]*Sqrt[1 + C[1]/((2 + 2*Sqrt[1 - C[1]])*#1)]*#1)/(Sqrt[C[
1]/(2 + 2*Sqrt[1 - C[1]])]*Sqrt[C[1] + 4*#1 + 4*#1^2]) & ][x + C[2]]}, {y[x] ->
InverseFunction[((2*I)*EllipticF[I*ArcSinh[Sqrt[C[1]/(2 + 2*Sqrt[1 - C[1]])]/Sqr
t[#1]], (1 + Sqrt[1 - C[1]])/(1 - Sqrt[1 - C[1]])]*Sqrt[1 + C[1]/((2 - 2*Sqrt[1
- C[1]])*#1)]*Sqrt[1 + C[1]/((2 + 2*Sqrt[1 - C[1]])*#1)]*#1)/(Sqrt[C[1]/(2 + 2*S
qrt[1 - C[1]])]*Sqrt[C[1] + 4*#1 + 4*#1^2]) & ][x + C[2]]}}
Maple raw input
dsolve(2*y(x)*diff(diff(y(x),x),x) = diff(y(x),x)^2+4*y(x)^2+8*y(x)^3, y(x),'implicit')
Maple raw output
Intat(1/(4*_a^3+_C1*_a+4*_a^2)^(1/2),_a = y(x))-x-_C2 = 0, Intat(-1/((4*_a^2+_C1
+4*_a)*_a)^(1/2),_a = y(x))-x-_C2 = 0