4.39.37 \((y(x)+x) y''(x)+y'(x)^2-y'(x)=0\)

ODE
\[ (y(x)+x) y''(x)+y'(x)^2-y'(x)=0 \] ODE Classification

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.8231 (sec), leaf count = 227

\[\left \{\left \{y(x)\to -\frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (x-c_2\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}-2 c_2+x\right \},\left \{y(x)\to \frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (x-c_2\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}-2 c_2+x\right \},\left \{y(x)\to -\frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (c_2+x\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}+2 c_2+x\right \},\left \{y(x)\to \frac {e^{-2 c_1} \sqrt {e^{2 c_1} \left (4 e^{c_1} \left (c_2+x\right )+1\right )}}{\sqrt {2}}+\frac {e^{-c_1}}{2}+2 c_2+x\right \}\right \}\]

Maple
cpu = 0.164 (sec), leaf count = 16

\[ \left \{ y \left ( x \right ) =\sqrt {{\it \_C1}+2\,x}{\it \_C2}+{\it \_C1}+x \right \} \] Mathematica raw input

DSolve[-y'[x] + y'[x]^2 + (x + y[x])*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> 1/(2*E^C[1]) + x - Sqrt[E^(2*C[1])*(1 + 4*E^C[1]*(x - C[2]))]/(Sqrt[2]
*E^(2*C[1])) - 2*C[2]}, {y[x] -> 1/(2*E^C[1]) + x + Sqrt[E^(2*C[1])*(1 + 4*E^C[1
]*(x - C[2]))]/(Sqrt[2]*E^(2*C[1])) - 2*C[2]}, {y[x] -> 1/(2*E^C[1]) + x + 2*C[2
] - Sqrt[E^(2*C[1])*(1 + 4*E^C[1]*(x + C[2]))]/(Sqrt[2]*E^(2*C[1]))}, {y[x] -> 1
/(2*E^C[1]) + x + 2*C[2] + Sqrt[E^(2*C[1])*(1 + 4*E^C[1]*(x + C[2]))]/(Sqrt[2]*E
^(2*C[1]))}}

Maple raw input

dsolve((x+y(x))*diff(diff(y(x),x),x)+diff(y(x),x)^2-diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C1+2*x)^(1/2)*_C2+_C1+x