4.38.46 \(y(x) y''(x)+y'(x)^2=0\)

ODE
\[ y(x) y''(x)+y'(x)^2=0 \] ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0253791 (sec), leaf count = 20

\[\left \{\left \{y(x)\to c_2 \sqrt {2 x-c_1}\right \}\right \}\]

Maple
cpu = 0.013 (sec), leaf count = 17

\[ \left \{ {\frac { \left ( y \left ( x \right ) \right ) ^{2}}{2}}-{\it \_C1}\,x-{\it \_C2}=0 \right \} \] Mathematica raw input

DSolve[y'[x]^2 + y[x]*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> Sqrt[2*x - C[1]]*C[2]}}

Maple raw input

dsolve(y(x)*diff(diff(y(x),x),x)+diff(y(x),x)^2 = 0, y(x),'implicit')

Maple raw output

1/2*y(x)^2-_C1*x-_C2 = 0