4.38.31 x4y(x)=x(x2+2y(x))y(x)4y(x)2

ODE
x4y(x)=x(x2+2y(x))y(x)4y(x)2 ODE Classification

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0702465 (sec), leaf count = 83

{{y(x)x2((1ic11)x2ic11+(1+ic11)c2)c2+x2ic11}}

Maple
cpu = 0.058 (sec), leaf count = 26

{ln(x)_C2_C1Artanh((x2y(x))_C1x2)=0} Mathematica raw input

DSolve[x^4*y''[x] == -4*y[x]^2 + x*(x^2 + 2*y[x])*y'[x],y[x],x]

Mathematica raw output

{{y[x] -> (x^2*(x^((2*I)*Sqrt[-1 - C[1]])*(1 - I*Sqrt[-1 - C[1]]) + (1 + I*Sqrt[
-1 - C[1]])*C[2]))/(x^((2*I)*Sqrt[-1 - C[1]]) + C[2])}}

Maple raw input

dsolve(x^4*diff(diff(y(x),x),x) = x*(x^2+2*y(x))*diff(y(x),x)-4*y(x)^2, y(x),'implicit')

Maple raw output

ln(x)-_C2-_C1*arctanh((x^2-y(x))/x^2*_C1) = 0