4.37.12 \(a y'(x)^2+b y'(x)+c y(x)+y''(x)=0\)

ODE
\[ a y'(x)^2+b y'(x)+c y(x)+y''(x)=0 \] ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 29.0765 (sec), leaf count = 0 , could not solve

DSolve[c*y[x] + b*Derivative[1][y][x] + a*Derivative[1][y][x]^2 + Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.557 (sec), leaf count = 58

\[ \left \{ y \left ( x \right ) ={\it ODESolStruc} \left ( {\it \_a},[ \left \{ \left ( {\frac {\rm d}{{\rm d}{\it \_a}}}{\it \_b} \left ( {\it \_a} \right ) \right ) {\it \_b} \left ( {\it \_a} \right ) +a \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{2}+{\it \_b} \left ( {\it \_a} \right ) b+c{\it \_a}=0 \right \} , \left \{ {\it \_a}=y \left ( x \right ) ,{\it \_b} \left ( {\it \_a} \right ) ={\frac {\rm d}{{\rm d}x}}y \left ( x \right ) \right \} , \left \{ x=\int \! \left ( {\it \_b} \left ( {\it \_a} \right ) \right ) ^{-1}\,{\rm d}{\it \_a}+{\it \_C1},y \left ( x \right ) ={\it \_a} \right \} ] \right ) \right \} \] Mathematica raw input

DSolve[c*y[x] + b*y'[x] + a*y'[x]^2 + y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[c*y[x] + b*Derivative[1][y][x] + a*Derivative[1][y][x]^2 + Derivative[2][
y][x] == 0, y[x], x]

Maple raw input

dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)^2+b*diff(y(x),x)+c*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = ODESolStruc(_a,[{diff(_b(_a),_a)*_b(_a)+a*_b(_a)^2+_b(_a)*b+c*_a = 0}, {_
a = y(x), _b(_a) = diff(y(x),x)}, {x = Int(1/_b(_a),_a)+_C1, y(x) = _a}])