[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.715449 (sec), leaf count = 151
Maple ✓
cpu = 0.132 (sec), leaf count = 108
DSolve[(a - x)^2*(b - x)^2*y''[x] == k^2*y[x],y[x],x]
Mathematica raw output
{{y[x] -> (-a + x)^((1 - Sqrt[1 + (4*k^2)/(a - b)^2])/2)*(-b + x)^((1 - Sqrt[1 +
(4*k^2)/(a - b)^2])/2)*((-a + x)^Sqrt[1 + (4*k^2)/(a - b)^2]*C[1] - ((-b + x)^S
qrt[1 + (4*k^2)/(a - b)^2]*C[2])/((a - b)*Sqrt[1 + (4*k^2)/(a - b)^2]))}}
Maple raw input
dsolve((a-x)^2*(b-x)^2*diff(diff(y(x),x),x) = k^2*y(x), y(x),'implicit')
Maple raw output
y(x) = ((a-x)*(b-x))^(1/2)*((1/(b-x)*(a-x))^((a^2-2*a*b+b^2+4*k^2)^(1/2)/(2*a-2*
b))*_C1+(1/(b-x)*(a-x))^(-(a^2-2*a*b+b^2+4*k^2)^(1/2)/(2*a-2*b))*_C2)