4.35.46 (ax)2(bx)2y(x)=k2y(x)

ODE
(ax)2(bx)2y(x)=k2y(x) ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.715449 (sec), leaf count = 151

{{y(x)(xa)12(14k2(ab)2+1)(xb)12(14k2(ab)2+1)(c1(xa)4k2(ab)2+1c2(xb)4k2(ab)2+1(ab)4k2(ab)2+1)}}

Maple
cpu = 0.132 (sec), leaf count = 108

{y(x)=(ax)(bx)((axbx)12a2ba22ab+b2+4k2_C1+(axbx)12a2ba22ab+b2+4k2_C2)} Mathematica raw input

DSolve[(a - x)^2*(b - x)^2*y''[x] == k^2*y[x],y[x],x]

Mathematica raw output

{{y[x] -> (-a + x)^((1 - Sqrt[1 + (4*k^2)/(a - b)^2])/2)*(-b + x)^((1 - Sqrt[1 +
 (4*k^2)/(a - b)^2])/2)*((-a + x)^Sqrt[1 + (4*k^2)/(a - b)^2]*C[1] - ((-b + x)^S
qrt[1 + (4*k^2)/(a - b)^2]*C[2])/((a - b)*Sqrt[1 + (4*k^2)/(a - b)^2]))}}

Maple raw input

dsolve((a-x)^2*(b-x)^2*diff(diff(y(x),x),x) = k^2*y(x), y(x),'implicit')

Maple raw output

y(x) = ((a-x)*(b-x))^(1/2)*((1/(b-x)*(a-x))^((a^2-2*a*b+b^2+4*k^2)^(1/2)/(2*a-2*
b))*_C1+(1/(b-x)*(a-x))^(-(a^2-2*a*b+b^2+4*k^2)^(1/2)/(2*a-2*b))*_C2)