[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✗
cpu = 139.621 (sec), leaf count = 0 , DifferentialRoot result
Maple ✗
cpu = 1.707 (sec), leaf count = 0 , result contains DESol
Mathematica raw input
DSolve[(a1 + b1*x^2)*y[x] + x*(a0 + b0*x^2)*y'[x] + (a^2 + x^2)^2*(b^2 + x^2)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> DifferentialRoot[Function[{\[FormalY], \[FormalX]}, {(a1 + \[FormalX]^
2*b1)*\[FormalY][\[FormalX]] + (\[FormalX]*a0 + \[FormalX]^3*b0)*Derivative[1][\
[FormalY]][\[FormalX]] + (\[FormalX]^2 + a^2)^2*(\[FormalX]^2 + b^2)*Derivative[
2][\[FormalY]][\[FormalX]] == 0, \[FormalY][0] == C[1], Derivative[1][\[FormalY]
][0] == C[2]}]][x]}}
Maple raw input
dsolve((a^2+x^2)^2*(b^2+x^2)*diff(diff(y(x),x),x)+x*(b0*x^2+a0)*diff(y(x),x)+(b1*x^2+a1)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = DESol({diff(diff(_Y(x),x),x)+x*(b0*x^2+a0)/(a^2+x^2)^2/(b^2+x^2)*diff(_Y(
x),x)+(b1*x^2+a1)/(a^2+x^2)^2/(b^2+x^2)*_Y(x)},{_Y(x)})