4.35.18 \(a^2 y(x)+x^4 y''(x)+2 x^3 y'(x)=0\)

ODE
\[ a^2 y(x)+x^4 y''(x)+2 x^3 y'(x)=0 \] ODE Classification

[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

Book solution method
TO DO

Mathematica
cpu = 0.0118228 (sec), leaf count = 25

\[\left \{\left \{y(x)\to c_1 \cos \left (\frac {a}{x}\right )-c_2 \sin \left (\frac {a}{x}\right )\right \}\right \}\]

Maple
cpu = 0.01 (sec), leaf count = 21

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,\sin \left ( {\frac {a}{x}} \right ) +{\it \_C2}\,\cos \left ( {\frac {a}{x}} \right ) \right \} \] Mathematica raw input

DSolve[a^2*y[x] + 2*x^3*y'[x] + x^4*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Cos[a/x] - C[2]*Sin[a/x]}}

Maple raw input

dsolve(x^4*diff(diff(y(x),x),x)+2*x^3*diff(y(x),x)+a^2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*sin(1/x*a)+_C2*cos(1/x*a)