4.35.6 4(1x)x(1ax)y(x)+y(x)(a0+a1x+a2x2)+y(x)(b0+b1x2)=0

ODE
4(1x)x(1ax)y(x)+y(x)(a0+a1x+a2x2)+y(x)(b0+b1x2)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 9.11495 (sec), leaf count = 0 , DifferentialRoot result

\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{\left (\text {b1} \unicode {f817}^2+\text {b0}\right ) \unicode {f818}(\unicode {f817})+\left (\text {a2} \unicode {f817}^2+\text {a1} \unicode {f817}+\text {a0}\right ) \unicode {f818}'(\unicode {f817})+4 (\unicode {f817}-1) \unicode {f817} (\unicode {f817} a-1) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(2)=c_1,\unicode {f818}'(2)=c_2\right \}\right )(x)\right \}\right \}

Maple
cpu = 1.031 (sec), leaf count = 0 , result contains DESol

{y(x)=DESol({d2dx2_Y(x)+(a2x2+a1x+a0)ddx_Y(x)4x(1x)(ax+1)+(b1x2+b0)_Y(x)4x(1x)(ax+1)},{_Y(x)})}

Mathematica raw input

DSolve[(b0 + b1*x^2)*y[x] + (a0 + a1*x + a2*x^2)*y'[x] + 4*(1 - x)*x*(1 - a*x)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> DifferentialRoot[Function[{\[FormalY], \[FormalX]}, {(b0 + \[FormalX]^
2*b1)*\[FormalY][\[FormalX]] + (a0 + \[FormalX]*a1 + \[FormalX]^2*a2)*Derivative
[1][\[FormalY]][\[FormalX]] + 4*(-1 + \[FormalX])*\[FormalX]*(-1 + \[FormalX]*a)
*Derivative[2][\[FormalY]][\[FormalX]] == 0, \[FormalY][2] == C[1], Derivative[1
][\[FormalY]][2] == C[2]}]][x]}}

Maple raw input

dsolve(4*x*(1-x)*(-a*x+1)*diff(diff(y(x),x),x)+(a2*x^2+a1*x+a0)*diff(y(x),x)+(b1*x^2+b0)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = DESol({diff(diff(_Y(x),x),x)+1/4*(a2*x^2+a1*x+a0)/x/(1-x)/(-a*x+1)*diff(_
Y(x),x)+1/4*(b1*x^2+b0)/x/(1-x)/(-a*x+1)*_Y(x)},{_Y(x)})