4.33.17 \(2 a (a+1) y(x)+2 (1-x) x y''(x)-(3 x+1) y'(x)=0\)

ODE
\[ 2 a (a+1) y(x)+2 (1-x) x y''(x)-(3 x+1) y'(x)=0 \] ODE Classification

[_Jacobi]

Book solution method
TO DO

Mathematica
cpu = 0.121712 (sec), leaf count = 114

\[\left \{\left \{y(x)\to c_1 \, _2F_1\left (\frac {1}{4} \left (1-\sqrt {16 a^2+16 a+1}\right ),\frac {1}{4} \left (\sqrt {16 a^2+16 a+1}+1\right );-\frac {1}{2};x\right )-i c_2 x^{3/2} \, _2F_1\left (\frac {1}{4} \left (7-\sqrt {16 a^2+16 a+1}\right ),\frac {1}{4} \left (\sqrt {16 a^2+16 a+1}+7\right );\frac {5}{2};x\right )\right \}\right \}\]

Maple
cpu = 0.106 (sec), leaf count = 86

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\mbox {$_2$F$_1$}({\frac {1}{4}}-{\frac {1}{4}\sqrt {16\,{a}^{2}+16\,a+1}},{\frac {1}{4}}+{\frac {1}{4}\sqrt {16\,{a}^{2}+16\,a+1}};\,-{\frac {1}{2}};\,x)}+{\it \_C2}\,{x}^{{\frac {3}{2}}}{\mbox {$_2$F$_1$}({\frac {7}{4}}+{\frac {1}{4}\sqrt {16\,{a}^{2}+16\,a+1}},{\frac {7}{4}}-{\frac {1}{4}\sqrt {16\,{a}^{2}+16\,a+1}};\,{\frac {5}{2}};\,x)} \right \} \] Mathematica raw input

DSolve[2*a*(1 + a)*y[x] - (1 + 3*x)*y'[x] + 2*(1 - x)*x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*Hypergeometric2F1[(1 - Sqrt[1 + 16*a + 16*a^2])/4, (1 + Sqrt[1 + 
16*a + 16*a^2])/4, -1/2, x] - I*x^(3/2)*C[2]*Hypergeometric2F1[(7 - Sqrt[1 + 16*
a + 16*a^2])/4, (7 + Sqrt[1 + 16*a + 16*a^2])/4, 5/2, x]}}

Maple raw input

dsolve(2*x*(1-x)*diff(diff(y(x),x),x)-(1+3*x)*diff(y(x),x)+2*a*(1+a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*hypergeom([1/4-1/4*(16*a^2+16*a+1)^(1/2), 1/4+1/4*(16*a^2+16*a+1)^(1/
2)],[-1/2],x)+_C2*x^(3/2)*hypergeom([7/4+1/4*(16*a^2+16*a+1)^(1/2), 7/4-1/4*(16*
a^2+16*a+1)^(1/2)],[5/2],x)