4.33.8 (2x2+1)y(x)+3xy(x)3y(x)=0

ODE
(2x2+1)y(x)+3xy(x)3y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0291386 (sec), leaf count = 55

{{y(x)c22x2+18Q3414(i2x)+i23/4c1xΓ(34)}}

Maple
cpu = 0.214 (sec), leaf count = 39

{y(x)=2x2+18(LegendreQ(34,14,i2x)_C2+LegendreP(34,14,i2x)_C1)} Mathematica raw input

DSolve[-3*y[x] + 3*x*y'[x] + (1 + 2*x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (I*2^(3/4)*x*C[1])/Gamma[3/4] + (1 + 2*x^2)^(1/8)*C[2]*LegendreQ[3/4, 
1/4, I*Sqrt[2]*x]}}

Maple raw input

dsolve((2*x^2+1)*diff(diff(y(x),x),x)+3*x*diff(y(x),x)-3*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (2*x^2+1)^(1/8)*(LegendreQ(3/4,1/4,I*2^(1/2)*x)*_C2+LegendreP(3/4,1/4,I*2
^(1/2)*x)*_C1)