4.32.18 ay(x)+(1x)xy(x)+2y(x)=0

ODE
ay(x)+(1x)xy(x)+2y(x)=0 ODE Classification

[[_2nd_order, _exact, _linear, _homogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.190273 (sec), leaf count = 87

{{y(x)(a2+a(2x1)+2(x1)x)(c2xa+1(1x)1a(a1)a(a+1)(a2+a(2x1)+2(x1)x)+c1)a2+3a+4}}

Maple
cpu = 0.025 (sec), leaf count = 42

{y(x)=_C1(a2+a(1+2x)+2x22x)+_C2xax(1+x)(1+x)a} Mathematica raw input

DSolve[2*y[x] - a*y'[x] + (1 - x)*x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> ((a^2 + 2*(-1 + x)*x + a*(-1 + 2*x))*(C[1] + ((1 - x)^(1 - a)*x^(1 + a
)*C[2])/((-1 + a)*a*(1 + a)*(a^2 + 2*(-1 + x)*x + a*(-1 + 2*x)))))/(4 + 3*a + a^
2)}}

Maple raw input

dsolve(x*(1-x)*diff(diff(y(x),x),x)-a*diff(y(x),x)+2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(a^2+a*(-1+2*x)+2*x^2-2*x)+_C2/((-1+x)^a)*(-1+x)*x^a*x