4.32.9 (a2x2)y(x)+y(x)(b2+c2x2)xy(x)=0

ODE
(a2x2)y(x)+y(x)(b2+c2x2)xy(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0309123 (sec), leaf count = 74

{{y(x)c1MathieuC[a2c22+b2,14a2c2,cos1(xa)]+c2MathieuS[a2c22+b2,14a2c2,cos1(xa)]}}

Maple
cpu = 0.234 (sec), leaf count = 63

{y(x)=_C1MathieuC(a2c22+b2,a2c24,arccos(xa))+_C2MathieuS(a2c22+b2,a2c24,arccos(xa))} Mathematica raw input

DSolve[(b^2 + c^2*x^2)*y[x] - x*y'[x] + (a^2 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]*MathieuC[b^2 + (a^2*c^2)/2, -(a^2*c^2)/4, ArcCos[x/a]] + C[2]*Mat
hieuS[b^2 + (a^2*c^2)/2, -(a^2*c^2)/4, ArcCos[x/a]]}}

Maple raw input

dsolve((a^2-x^2)*diff(diff(y(x),x),x)-x*diff(y(x),x)+(c^2*x^2+b^2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*MathieuC(1/2*a^2*c^2+b^2,-1/4*a^2*c^2,arccos(x/a))+_C2*MathieuS(1/2*a
^2*c^2+b^2,-1/4*a^2*c^2,arccos(x/a))