4.32.5 axy(x)(2a)y(x)+(x2+1)y(x)=0

ODE
axy(x)(2a)y(x)+(x2+1)y(x)=0 ODE Classification

[[_2nd_order, _exact, _linear, _homogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0237286 (sec), leaf count = 68

{{y(x)(x2+1)12a4(c1Pa42a22(ix)+c2Qa42a22(ix))}}

Maple
cpu = 0.156 (sec), leaf count = 36

{y(x)=_C1(x2+1)1a2+_C22F1(1,a212;32;x2)x} Mathematica raw input

DSolve[-((2 - a)*y[x]) + a*x*y'[x] + (1 + x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (1 + x^2)^(1/2 - a/4)*(C[1]*LegendreP[(-4 + a)/2, (-2 + a)/2, I*x] + C
[2]*LegendreQ[(-4 + a)/2, (-2 + a)/2, I*x])}}

Maple raw input

dsolve((x^2+1)*diff(diff(y(x),x),x)+a*x*diff(y(x),x)-(2-a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(x^2+1)^(1-1/2*a)+_C2*hypergeom([1, 1/2*a-1/2],[3/2],-x^2)*x