4.31.48 (1x2)y(x)(x2+1)y(x)4xy(x)=0

ODE
(1x2)y(x)(x2+1)y(x)4xy(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0268193 (sec), leaf count = 41

{{y(x)eix(2c1ic2e2ix)2(x21)}}

Maple
cpu = 0.04 (sec), leaf count = 21

{y(x)=_C1sin(x)+_C2cos(x)x21} Mathematica raw input

DSolve[-((1 + x^2)*y[x]) - 4*x*y'[x] + (1 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (2*C[1] - I*E^((2*I)*x)*C[2])/(2*E^(I*x)*(-1 + x^2))}}

Maple raw input

dsolve((-x^2+1)*diff(diff(y(x),x),x)-4*x*diff(y(x),x)-(x^2+1)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C1*sin(x)+_C2*cos(x))/(x^2-1)