ODE
\[ \left (x^2+1\right ) y''(x)+2 x y'(x)-2 y(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0586701 (sec), leaf count = 48
\[\left \{\left \{y(x)\to \frac {1}{2} i \left (2 c_1 x-c_2 x \log (1-i x)+c_2 x \log (1+i x)+2 i c_2\right )\right \}\right \}\]
Maple ✓
cpu = 0.026 (sec), leaf count = 14
\[ \left \{ y \left ( x \right ) =\arctan \left ( x \right ) {\it \_C2}\,x+{\it \_C1}\,x+{\it \_C2} \right \} \] Mathematica raw input
DSolve[-2*y[x] + 2*x*y'[x] + (1 + x^2)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (I/2)*(2*x*C[1] + (2*I)*C[2] - x*C[2]*Log[1 - I*x] + x*C[2]*Log[1 + I*
x])}}
Maple raw input
dsolve((x^2+1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = arctan(x)*_C2*x+_C1*x+_C2