4.30.41 axy(x)+y(x)(b+cx2k)+x2y(x)=0

ODE
axy(x)+y(x)(b+cx2k)+x2y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0939198 (sec), leaf count = 561

{{y(x)2k2(a22a4b+1)+ka22a4b+1ak+k2k2kk2(a22a4b+1)+ka22a4b+1ak+k2k2ck2(a22a4b+1)+k(a22a4b+1+a1)4k2(x2k)k2(a22a4b+1)+k(a22a4b+1+a1)4k2(c22k2(a22a4b+1)k2kk2(a22a4b+1)k2ca22a4b+12k(x2k)a22a4b+12kΓ(a22a4b+12k+1)J(a22a4b+1)k22k2(cx2kk)+c12a22a4b+1kka22a4b+1kck2(a22a4b+1)2k2(x2k)k2(a22a4b+1)2k2Γ(1a22a4b+12k)J(a22a4b+1)k22k2(cx2kk))}}

Maple
cpu = 0.036 (sec), leaf count = 75

{y(x)=xa2+12(Y12ka22a4b+1(xkkc)_C2+J12ka22a4b+1(xkkc)_C1)} Mathematica raw input

DSolve[(b + c*x^(2*k))*y[x] + a*x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (2^(Sqrt[1 - 2*a + a^2 - 4*b]/k)*c^(Sqrt[(1 - 2*a + a^2 - 4*b)*k^2]/(2
*k^2))*k^(Sqrt[1 - 2*a + a^2 - 4*b]/k)*(x^(2*k))^(Sqrt[(1 - 2*a + a^2 - 4*b)*k^2
]/(2*k^2))*BesselJ[-Sqrt[(1 - 2*a + a^2 - 4*b)*k^2]/(2*k^2), (Sqrt[c]*Sqrt[x^(2*
k)])/k]*C[1]*Gamma[1 - Sqrt[1 - 2*a + a^2 - 4*b]/(2*k)] + 2^(Sqrt[(1 - 2*a + a^2
 - 4*b)*k^2]/k^2)*c^(Sqrt[1 - 2*a + a^2 - 4*b]/(2*k))*k^(Sqrt[(1 - 2*a + a^2 - 4
*b)*k^2]/k^2)*(x^(2*k))^(Sqrt[1 - 2*a + a^2 - 4*b]/(2*k))*BesselJ[Sqrt[(1 - 2*a 
+ a^2 - 4*b)*k^2]/(2*k^2), (Sqrt[c]*Sqrt[x^(2*k)])/k]*C[2]*Gamma[1 + Sqrt[1 - 2*
a + a^2 - 4*b]/(2*k)])/(2^((k - a*k + Sqrt[1 - 2*a + a^2 - 4*b]*k + Sqrt[(1 - 2*
a + a^2 - 4*b)*k^2])/(2*k^2))*c^(((-1 + a + Sqrt[1 - 2*a + a^2 - 4*b])*k + Sqrt[
(1 - 2*a + a^2 - 4*b)*k^2])/(4*k^2))*k^((k - a*k + Sqrt[1 - 2*a + a^2 - 4*b]*k +
 Sqrt[(1 - 2*a + a^2 - 4*b)*k^2])/(2*k^2))*(x^(2*k))^(((-1 + a + Sqrt[1 - 2*a + 
a^2 - 4*b])*k + Sqrt[(1 - 2*a + a^2 - 4*b)*k^2])/(4*k^2)))}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+(b+c*x^(2*k))*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*a+1/2)*(BesselY(1/2*(a^2-2*a-4*b+1)^(1/2)/k,c^(1/2)*x^k/k)*_C2+Be
sselJ(1/2*(a^2-2*a-4*b+1)^(1/2)/k,c^(1/2)*x^k/k)*_C1)