4.30.19 \(x^2 y''(x)+3 x y'(x)+y(x)=x\)

ODE
\[ x^2 y''(x)+3 x y'(x)+y(x)=x \] ODE Classification

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.00960758 (sec), leaf count = 26

\[\left \{\left \{y(x)\to \frac {4 c_2 \log (x)+4 c_1+x^2}{4 x}\right \}\right \}\]

Maple
cpu = 0.014 (sec), leaf count = 20

\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C2}}{x}}+{\frac {x}{4}}+{\frac {{\it \_C1}\,\ln \left ( x \right ) }{x}} \right \} \] Mathematica raw input

DSolve[y[x] + 3*x*y'[x] + x^2*y''[x] == x,y[x],x]

Mathematica raw output

{{y[x] -> (x^2 + 4*C[1] + 4*C[2]*Log[x])/(4*x)}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+y(x) = x, y(x),'implicit')

Maple raw output

y(x) = _C2/x+1/4*x+1/x*_C1*ln(x)