4.29.49 \(-\left (p^2+x^2\right ) y(x)+x^2 y''(x)+x y'(x)=0\)

ODE
\[ -\left (p^2+x^2\right ) y(x)+x^2 y''(x)+x y'(x)=0 \] ODE Classification

[[_Bessel, _modified]]

Book solution method
TO DO

Mathematica
cpu = 0.00922328 (sec), leaf count = 26

\[\left \{\left \{y(x)\to c_1 J_p(-i x)+c_2 Y_p(-i x)\right \}\right \}\]

Maple
cpu = 0.028 (sec), leaf count = 15

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\sl I}_{p}\left (x\right )}+{\it \_C2}\,{{\sl K}_{p}\left (x\right )} \right \} \] Mathematica raw input

DSolve[-((p^2 + x^2)*y[x]) + x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> BesselJ[p, (-I)*x]*C[1] + BesselY[p, (-I)*x]*C[2]}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-(p^2+x^2)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*BesselI(p,x)+_C2*BesselK(p,x)