4.29.13 \(4 y''(x)+2 y'(x)+y(x)=0\)

ODE
\[ 4 y''(x)+2 y'(x)+y(x)=0 \] ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.0068397 (sec), leaf count = 42

\[\left \{\left \{y(x)\to e^{-x/4} \left (c_1 \sin \left (\frac {\sqrt {3} x}{4}\right )+c_2 \cos \left (\frac {\sqrt {3} x}{4}\right )\right )\right \}\right \}\]

Maple
cpu = 0.003 (sec), leaf count = 28

\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {x}{4}}}} \left ( \sin \left ( {\frac {\sqrt {3}x}{4}} \right ) {\it \_C1}+\cos \left ( {\frac {\sqrt {3}x}{4}} \right ) {\it \_C2} \right ) \right \} \] Mathematica raw input

DSolve[y[x] + 2*y'[x] + 4*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (C[2]*Cos[(Sqrt[3]*x)/4] + C[1]*Sin[(Sqrt[3]*x)/4])/E^(x/4)}}

Maple raw input

dsolve(4*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(-1/4*x)*(sin(1/4*3^(1/2)*x)*_C1+cos(1/4*3^(1/2)*x)*_C2)