4.28.41 2(a+bx)y(x)+y(x)(2a+bx)+xy(x)=0

ODE
2(a+bx)y(x)+y(x)(2a+bx)+xy(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0247 (sec), leaf count = 117

{{y(x)x2a+1ebxb1bx(c1U(b1ba+a+1,2a+2,2b1bx)+c2La(b1b+1)12a+1(2b1bx))}}

Maple
cpu = 0.198 (sec), leaf count = 106

{y(x)=ex(bb1+b)x2a+1(M(1(1+ba+ab+b)1b,2a+2,2b1+bx)_C1+U(1(1+ba+ab+b)1b,2a+2,2b1+bx)_C2)} Mathematica raw input

DSolve[(2*a + b*x)*y[x] - 2*(a + b*x)*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^(-(Sqrt[-1 + b]*Sqrt[b]*x) + b*x)*x^(1 + 2*a)*(C[1]*HypergeometricU[
1 + a + a*Sqrt[(-1 + b)/b], 2 + 2*a, 2*Sqrt[-1 + b]*Sqrt[b]*x] + C[2]*LaguerreL[
-1 - a*(1 + Sqrt[(-1 + b)/b]), 1 + 2*a, 2*Sqrt[-1 + b]*Sqrt[b]*x])}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)-2*(b*x+a)*diff(y(x),x)+(b*x+2*a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(x*(b-b^(1/2)*(-1+b)^(1/2)))*x^(2*a+1)*(KummerM(((-1+b)^(1/2)*a+a*b^(1
/2)+b^(1/2))/b^(1/2),2*a+2,2*b^(1/2)*(-1+b)^(1/2)*x)*_C1+KummerU(((-1+b)^(1/2)*a
+a*b^(1/2)+b^(1/2))/b^(1/2),2*a+2,2*b^(1/2)*(-1+b)^(1/2)*x)*_C2)