4.28.23 ay(x)+bxy(x)+xy(x)=0

ODE
ay(x)+bxy(x)+xy(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0225325 (sec), leaf count = 54

{{y(x)x12a2(c1Ja12(bx)+c2Ya12(bx))}}

Maple
cpu = 0.043 (sec), leaf count = 39

{y(x)=xa2+12(Ya212(bx)_C2+Ja212(bx)_C1)} Mathematica raw input

DSolve[b*x*y[x] + a*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x^(1/2 - a/2)*(BesselJ[(-1 + a)/2, Sqrt[b]*x]*C[1] + BesselY[(-1 + a)/
2, Sqrt[b]*x]*C[2])}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)+a*diff(y(x),x)+b*x*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(-1/2*a+1/2)*(BesselY(1/2*a-1/2,b^(1/2)*x)*_C2+BesselJ(1/2*a-1/2,b^(1/2
)*x)*_C1)