ODE
\[ y''(x)+8 y'(x)+16 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00492811 (sec), leaf count = 18
\[\left \{\left \{y(x)\to e^{-4 x} \left (c_2 x+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 14
\[ \left \{ y \left ( x \right ) ={{\rm e}^{-4\,x}} \left ( {\it \_C2}\,x+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[16*y[x] + 8*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + x*C[2])/E^(4*x)}}
Maple raw input
dsolve(diff(diff(y(x),x),x)+8*diff(y(x),x)+16*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(-4*x)*(_C2*x+_C1)