4.24.3 a+xy(x)+log(y(x))=y(x)

ODE
a+xy(x)+log(y(x))=y(x) ODE Classification

[[_1st_order, _with_linear_symmetries], _Clairaut]

Book solution method
Clairaut’s equation and related types, main form

Mathematica
cpu = 0.0412561 (sec), leaf count = 22

{{y(x)xeac1c1}}

Maple
cpu = 0.019 (sec), leaf count = 28

{y(x)ln(x1)a+1=0,y(x)=ln(_C1)+_C1x+a} Mathematica raw input

DSolve[a + Log[y'[x]] + x*y'[x] == y[x],y[x],x]

Mathematica raw output

{{y[x] -> E^(-a - C[1])*x - C[1]}}

Maple raw input

dsolve(ln(diff(y(x),x))+x*diff(y(x),x)+a = y(x), y(x),'implicit')

Maple raw output

y(x)-ln(-1/x)-a+1 = 0, y(x) = ln(_C1)+_C1*x+a