ODE
\[ y'(x)+\sin \left (y'(x)\right )=x \] ODE Classification
[_quadrature]
Book solution method
Missing Variables ODE, Dependent variable missing, Solve for \(x\)
Mathematica ✗
cpu = 0.00797693 (sec), leaf count = 0 , could not solve
DSolve[Sin[Derivative[1][y][x]] + Derivative[1][y][x] == x, y[x], x]
Maple ✓
cpu = 0.03 (sec), leaf count = 16
\[ \left \{ y \left ( x \right ) =\int \!{\it RootOf} \left ( {\it \_Z}+\sin \left ( {\it \_Z} \right ) -x \right ) \,{\rm d}x+{\it \_C1} \right \} \] Mathematica raw input
DSolve[Sin[y'[x]] + y'[x] == x,y[x],x]
Mathematica raw output
DSolve[Sin[Derivative[1][y][x]] + Derivative[1][y][x] == x, y[x], x]
Maple raw input
dsolve(sin(diff(y(x),x))+diff(y(x),x) = x, y(x),'implicit')
Maple raw output
y(x) = Int(RootOf(_Z+sin(_Z)-x),x)+_C1