4.22.21 \(x^2 y'(x)^3-2 x y(x) y'(x)^2+y(x)^2 y'(x)+1=0\)

ODE
\[ x^2 y'(x)^3-2 x y(x) y'(x)^2+y(x)^2 y'(x)+1=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries], _Clairaut]

Book solution method
Clairaut’s equation and related types, \(f(y-x y', y')=0\)

Mathematica
cpu = 599.997 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.05 (sec), leaf count = 37

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{3}+{\frac {27\,x}{4}}=0,y \left ( x \right ) ={\it \_C1}\,x-{\frac {1}{\sqrt {-{\it \_C1}}}},y \left ( x \right ) ={\it \_C1}\,x+{\frac {1}{\sqrt {-{\it \_C1}}}} \right \} \] Mathematica raw input

DSolve[1 + y[x]^2*y'[x] - 2*x*y[x]*y'[x]^2 + x^2*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(x^2*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+y(x)^2*diff(y(x),x)+1 = 0, y(x),'implicit')

Maple raw output

y(x)^3+27/4*x = 0, y(x) = _C1*x-1/(-_C1)^(1/2), y(x) = _C1*x+1/(-_C1)^(1/2)