4.21.22 y(x)3=axn

ODE
y(x)3=axn ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Dependent variable missing, Solve for y

Mathematica
cpu = 0.0137978 (sec), leaf count = 95

{{y(x)3a3xn3+1n+3+c1},{y(x)c1313a3xn3+1n+3},{y(x)3(1)2/3a3xn3+1n+3+c1}}

Maple
cpu = 0.104 (sec), leaf count = 81

{y(x)=3xaxn3n+3+_C1,y(x)=3x(i31)axn32n+6+_C1,y(x)=3x(i3+1)axn32n+6+_C1} Mathematica raw input

DSolve[y'[x]^3 == a*x^n,y[x],x]

Mathematica raw output

{{y[x] -> (3*a^(1/3)*x^(1 + n/3))/(3 + n) + C[1]}, {y[x] -> (-3*(-1)^(1/3)*a^(1/
3)*x^(1 + n/3))/(3 + n) + C[1]}, {y[x] -> (3*(-1)^(2/3)*a^(1/3)*x^(1 + n/3))/(3 
+ n) + C[1]}}

Maple raw input

dsolve(diff(y(x),x)^3 = a*x^n, y(x),'implicit')

Maple raw output

y(x) = 3*x/(n+3)*(a*x^n)^(1/3)+_C1, y(x) = 3*x*(I*3^(1/2)-1)*(a*x^n)^(1/3)/(2*n+
6)+_C1, y(x) = -3*x*(I*3^(1/2)+1)*(a*x^n)^(1/3)/(2*n+6)+_C1