# |
ODE |
Mathematica |
Maple |
\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \] |
✓ |
✓ |
|
\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \] |
✓ |
✓ |
|
\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}\left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \] |
✓ |
✓ |
|
\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \] |
✗ |
✗ |
|
\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \] |
✗ |
✗ |
|