3.12.10 Problems 901 to 1000

Table 3.675: Third and higher order linear ODE

#

ODE

Mathematica

Maple

14696

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

14697

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

14698

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

14699

\[ {}y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

14700

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

14701

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

14702

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

14703

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

14704

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

14705

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

14706

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

14707

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (2+t \right ) y^{\prime } = -2-t \]

14708

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]

14709

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{\frac {7}{2}}} \]

14722

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

14723

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

14724

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

14725

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

14726

\[ {}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

14727

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

14728

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

14729

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

14738

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

14739

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

14744

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

14745

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

14746

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

14747

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

14755

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

14756

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

14757

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

14758

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

14770

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

14771

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

14772

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

14773

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

14774

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

14775

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

14842

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

14843

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

14844

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

14855

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

14856

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

14857

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

14858

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

15177

\[ {}x y^{\prime \prime \prime } = 2 \]

15185

\[ {}y^{\prime \prime \prime \prime } = x \]

15186

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

15198

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

15224

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

15227

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

15229

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

15231

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

15232

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

15235

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

15236

\[ {}y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

15237

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

15238

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

15239

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

15240

\[ {}y^{\left (5\right )} = 0 \]

15241

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

15242

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

15243

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

15260

\[ {}y^{\prime \prime \prime }+y = x \]

15261

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

15262

\[ {}y^{\prime \prime \prime }+y^{\prime } = 2 \]

15263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

15264

\[ {}y^{\prime \prime \prime \prime }-y = 1 \]

15265

\[ {}y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

15266

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

15267

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

15268

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

15269

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

15270

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

15271

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

15272

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

15273

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

15274

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

15275

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

15276

\[ {}y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

15277

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

15278

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

15279

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = x \,{\mathrm e}^{x} \]

15283

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

15284

\[ {}5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

15285

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

15286

\[ {}3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

15287

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

15310

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

15311

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

15313

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

15316

\[ {}y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

15317

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

15318

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

15324

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 1+{\mathrm e}^{x} \]

15325

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

15335

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

15337

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

15353

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

15355

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]