# |
ODE |
Mathematica |
Maple |
\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \] |
✗ |
✗ |
|
\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \] |
✗ |
✗ |
|
\[ {}t \left (-1+t \right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{\frac {1}{3}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \] |
✗ |
✗ |
|
\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y^{2} \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 x y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (-2+x \right ) y = {\mathrm e}^{2 x} \] |
✗ |
✗ |
|
\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (-1+x \right )^{3} y = \left (-1+x \right )^{3} {\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \] |
✗ |
✗ |
|
\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\left (x \tan \left (y\right )^{2}-x \right ) y^{\prime } = 2 x^{2}+\tan \left (y\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \] |
✗ |
✗ |
|
\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime } = \sin \left (y\right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}x^{2}+y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}2 y^{4} x -y+\left (4 y^{3} x^{3}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+a y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = \sin \left (x -y\right ) \] |
✗ |
✗ |
|
\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+x^{3}+y = 0 \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \] |
✗ |
✗ |
|
\[ {}\left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 y \sin \left (x \right )\right ) = 0 \] |
✗ |
✗ |
|
\[ {}x \left (a +y\right ) y^{\prime }+b x +c y = 0 \] |
✗ |
✗ |
|
\[ {}\left (a +x \left (x +y\right )\right ) y^{\prime } = b \left (x +y\right ) y \] |
✗ |
✗ |
|
\[ {}\left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \] |
✗ |
✗ |
|
\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \] |
✗ |
✗ |
|
\[ {}\left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \] |
✗ |
✗ |
|
\[ {}x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \] |
✗ |
✗ |
|
\[ {}\frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \] |
✗ |
✗ |
|
\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \] |
✗ |
✗ |
|
\[ {}x^{\prime }+t x = {\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}x x^{\prime }+t^{2} x = \sin \left (t \right ) \] |
✗ |
✗ |
|
\[ {}y y^{\prime }+2 x = 5 y^{3} \] |
✗ |
✗ |
|
\[ {}2 x +y^{2}-\cos \left (x +y\right )-\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}2 x y+\left (2 x +3 y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+{\mathrm e}^{x} y = 0 \] |
✗ |
✗ |
|
\[ {}[y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 x y_{2} \left (x \right )-y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y} \] |
✗ |
✗ |
|
\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \] |
✗ |
✗ |
|
\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (x \right )^{2} y y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \] |
✗ |
✗ |
|
\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \] |
✗ |
✗ |
|
\[ {}[x^{\prime }\left (t \right ) = t y \left (t \right )+1, y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )] \] |
✗ |
✗ |
|
\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }+5 x y^{\prime }+\sqrt {x}\, y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \] |
✗ |
✗ |
|
\[ {}y y^{\prime \prime } = x \] |
✗ |
✗ |
|
\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \] |
✗ |
✗ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \] |
✗ |
✗ |
|
\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \] |
✗ |
✗ |
|
\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \] |
✗ |
✗ |
|
\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+a \phi ^{\prime }\left (x \right ) y^{3}+6 a \phi \left (x \right ) y^{2}+\frac {\left (2 a +1\right ) y \phi ^{\prime \prime }\left (x \right )}{\phi ^{\prime }\left (x \right )}+2+2 a = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \] |
✗ |
✗ |
|